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Motivation

There is a remarkable coincidence between the dark matter and baryon
densities

ΩDM ≈ 5 Ωbaryon

Traditional models of WIMP dark matter do not address this coincidence

I Dark matter is a thermal relic
I Relic density set by annihilation cross section: WIMP miracle
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Motivation

Nearly all models explaining the DM-baryon ratio use asymmetric dark
matter

Compelling scenario with many possible mechanisms and models

I Transfer of the B asymmetry to dark matter
I Transfer of a dark matter asymmetry to B
I Co–generation of the asymmetries

New work: transfer by mass mixing (see arXiv:1106.4834 and Yanou’s talk)

(For more info, see SPIRES: “find t asymmetric dark matter”and references cited therein)

However, asymmetric dark matter models give up the WIMP miracle.
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WIMPy baryogenesis

We present a model of symmetric DM that preserves the WIMP miracle and
gives a connection between the DM and baryon densities.

WIMPy baryogenesis:
WIMP dark matter annihilates through baryon-violating couplings

Physical CP phases in annihilation operators

Out-of-equilibrium condition satisfied by WIMP freeze-out

WIMP freeze-out can generate a baryon asymmetry!

Also, baryogenesis is around the weak scale ⇒ new charged states and
CP-phases

Asymmetry generation through annihilation first proposed by Gu and Sarkar, 2009

For another way of connecting the WIMP miracle and baryon density, see McDonald, 1009.3227

and 1108.4653
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Overview of WIMPy baryogenesis

Baryon asymmetry comes from interference of tree-level and loop annihilation
diagrams:

DM

DM

B

B

DM

DM

B

B

DM

DM

B

B

The baryon-violating coupling also leads to washout processes:

B

B

B̄

B̄
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Overview of WIMPy baryogenesis: evolution

Consider dark matter particle X

Boltzmann equations:

In terms of Yi = ni/s and x = mX/T , the evolution is schematically:

dYX

dx
= −A 〈σannv〉

[
Y 2
X − (Y eq

X )2
]

+ back− reaction

dY∆B

dx
= εA 〈σannv〉

[
Y 2
X − (Y eq

X )2
]
− C 〈σwashoutv〉Y∆B

∏
i

Y eq
i

ε = fractional asymmetry produced per annihilation

A and C are coefficient functions including factors of s, H, . . .

Yi are other baryon-number-carrying fields
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Overview of WIMPy baryogenesis: asymmetry

In the limit where back-reaction on X is small,

Y∆B(x) ≈ −ε
∫ x

0

dx ′
dYX (x ′)

dx ′
exp

[
−
∫ x

x′
dx ′′ C 〈σwashoutv〉

∏
i

Y eq
i (x ′′)

]

Approximate exp(· · · ) ≈ θ(x − x0), where x0 is the time of washout freeze-out:

Y∆B(x) ≈ ε [YX (x0)− YX (x)] θ(x − x0)

Asymmetry proportional to change in X density after washout
processes freeze out
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Overview of WIMPy baryogenesis: asymmetry

Y∆B(x) ≈ ε [YX (x0)− YX (x)] θ(x − x0)

YX
eq

YX

15 20 25 30 35 40 45 50
10-22

10-19

10-16

10-13

10-10

10-7

x

Y
X

Washout must freeze out
before annihilations

Y∆B ∼ 10−10 and ε < 1 ⇒ x0 . 20

Two possibilities for successful baryogenesis:

1 σann � σwashout

2 Heavy baryon states so that washout rate is Boltzmann suppressed
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Toy model: WIMPy leptogenesis

Toy model of annihilation to leptons:

Vectorlike dark matter X , X̄

Heavy pseudoscalars Si (at least 2 needed for physical CP phase)

Dark matter annihilates to Standard Model LH lepton doublet Lj

Vectorlike exotic lepton doublet ψj , ψ̄j (with lepton flavor charge)

L ⊃ Lmass −
i

2

(
yXiX

2 + y ′Xi X̄
2
)
Si − i yL ij SiLjψj + h.c.

Lepton asymmetry converted to baryon asymmetry by sphalerons

σann ∼ y2
X y2

L σwashout ∼ y4
L
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Toy model: WIMPy leptogenesis

L ⊃ Lmass −
i

2

(
yXiX

2 + y ′Xi X̄
2
)
Si − i yL ij SiLjψj + h.c.

In this model, ψ carries generalized lepton number −1

ψ decays to sterile sector with separately conserved global symmetry,
asymmetry in sterile sector equal and opposite to SM lepton asymmetry

ex. gauge singlet fermion n

L ⊃ yn ψH†n
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Toy model: WIMPy leptogenesis

Z4 symmetry:

X and n stable

Prevent L− ψ̄ mixing

Z4

X i
X̄ −i
S −1
ψ −1
ψ̄ −1
n −1
SM fields +1
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Toy model: asymmetry generation processes

Dark matter annihilations:

X

X

L

ψ

X

X

L†

ψ†

Decays and inverse decays:

S

L

ψ

S

L†

ψ†

For weak scale masses and couplings, ΓS � H and asymmetry from decays is
negligible
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Toy model: washout processes

Washout processes:

L

ψ

L†

ψ†

L

ψ

ψ†

L†

L

X

ψ†

X

L

L

ψ†

ψ†
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Toy model: CP-violation

CP-violating factor:

ε =
σ(XX → ψiLi ) + σ(X̄ X̄ → ψiLi )− σ(XX → ψ†i L

†
i )− σ(X̄ X̄ → ψ†i L

†
i )

σ(XX → ψiLi ) + σ(X̄ X̄ → ψiLi ) + σ(XX → ψ†i L
†
i ) + σ(X̄ X̄ → ψ†i L

†
i )

There are many parameters! We make the assumptions

Only one flavour of L relevant for WIMPy leptogenesis

Annihilation through the lightest scalar S1 is dominant

Treat yL = yL1 and ε as free parameters subject to the above conditions and
perturbativity

ε =
1

8π

Im(y2
L1y
∗2
L2 )

|yL1|2
f

(
mS1

mS2

)

(f is a loop function)

B. Shuve (Harvard) A WIMPy Leptogenesis Miracle SUSY 2011 August 31, 2011 15 / 23



Toy model: CP-violation

CP-violating factor:

ε =
σ(XX → ψiLi ) + σ(X̄ X̄ → ψiLi )− σ(XX → ψ†i L

†
i )− σ(X̄ X̄ → ψ†i L

†
i )

σ(XX → ψiLi ) + σ(X̄ X̄ → ψiLi ) + σ(XX → ψ†i L
†
i ) + σ(X̄ X̄ → ψ†i L

†
i )

There are many parameters! We make the assumptions

Only one flavour of L relevant for WIMPy leptogenesis

Annihilation through the lightest scalar S1 is dominant

Treat yL = yL1 and ε as free parameters subject to the above conditions and
perturbativity

ε =
1

8π

Im(y2
L1y
∗2
L2 )

|yL1|2
f

(
mS1

mS2

)

(f is a loop function)

B. Shuve (Harvard) A WIMPy Leptogenesis Miracle SUSY 2011 August 31, 2011 15 / 23



Toy model: CP-violation

Solve Boltzmann equations numerically:

dYX

dx
= −A 〈σannv〉

[
Y 2

X − (Y eq
X )2

]
+ B 〈σannv〉Y∆L (Y eq

X )2

dY∆L

dx
= εA 〈σannv〉

[
Y 2

X − (Y eq
X )2

]
− C 〈σwashoutv〉Y∆LY

eq
L Y eq

ψ

Also include effects of other equilibrium interactions (sphalerons and
Yukawas) by including a pre-factor in the Y∆L equation

I Some of the L asymmetry is converted to asymmetry in Ē , Q, d̄ , ū
I Chemical potential relations come from sphalerons, Yukawas, conservation of

gauge charges, conservation of U(1)B−L+n−ψ
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Toy model: Parameter scan

6 parameters: mX , mψ, mS , yX , yL, and ε

Show masses for which WIMPy leptogenesis gives correct relic density and
asymmetry for which at least one set of perturbative couplings yL, yX , and ε

0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

mX�mS

m
Ψ

�
m

S

X and ψ mass typically
constrained to lie within
factor of a few

Enhancement of σann
around mX = mS/2 gives
more parameter space there

mS = 5 TeV

Asymmetry should be generated before sphalerons decouple ⇒ mX & TeV
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Toy model: Parameter scan

How tuned do couplings have to be?

Choose point in middle of parameter space
I mX = 3 TeV, mψ = 4 TeV, mS = 5 TeV, ε = 0.1

Y
X

=
1.33

´
10 -13

YX = 5 ´ 10-14

YX = 5 ´ 10-13

2 4 6 8

0.10

1.00

0.50

0.20

2.00

0.30

0.15

1.50

0.70

yX

y L
�
y X

Solid lines: X relic abundance

Dotted lines: baryon asymmetry
(from top, Y∆B = 10−11, 3× 10−11,
8.85× 10−11, 10−10)

Observed values shown in red

Tuning of ∼ 5% to get observed values

Tuning more severe for lighter mψ, less severe for heavier mψ

Less tuning for lighter mX because YX is larger and washout is smaller due to
large S width
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Variations: annihilations to quarks

Dark matter can annihilate directly to quarks

ψ is now a colour triplet

W ⊃ yū S ψ ū + yψ̄ ψ̄ d̄ d̄

Asymmetry can be generated after
sphalerons become inactive

Collider constraint mψ & 500 GeV

X can be as light as 250 GeV 400 600 800 1000
0

500

1000

1500

2000

mX HTeVL

m
Ψ

HT
eV

L

PRELIMINARY!

Parameter space similar to that of toy model
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Detection: electric dipole moments

Contributions to electric dipole moments (e− and neutron) are at two loops

ψ†

S1 S2

eL eR

d

e
∼
∑
i

Im(yL11y
∗
L21yL1iy

∗
L2i )

(16π2)2

me

m2
S

Constraints depend predominantly on coupling to first-generation
quarks/leptons

ex. need yL1i . 10−2 − 1 for mS = 5 TeV from neutron/electron EDM

For couplings near the current constraints, could see in next generation
experiments
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Detection: colliders

New charged particles with TeV-scale mass

Accessible at LHC?

Leptogenesis case

ψ

ψ†

q

q̄

H∗

n

n†

H

Higgsino-like topology

Signature is 2bb̄ +��ET

No explicit bound on direct Higgsino production

In principle bounded by gluino searches
I Better to add b-tags, H mass reconstruction, etc.

Also look for decay of charged ψ through longitudinal W
I 3-body decay to bb̄W and/or 2-body decay to bc̄
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Detection: colliders

Direct baryogenesis case

ψ̄

ψ̄†

q

q̄

˜̄d

d̄

d̄†

˜̄d∗

Gluino-like topology with
different group theory factors

4j +�ET final state

Current LHC bound excludes
mψ . 500 GeV

LHC should (hopefully) eventually test mψ up to ∼ 3 TeV
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Conclusions

WIMPy baryogenesis: WIMP annihilations can generate a baryon asymmetry

Generate baryon asymmetry at weak scale (directly or via leptogenesis)

Predicts new TeV-scale gauge-charged particles

Toy model representative of models of WIMPy baryogenesis

Possible signals in EDM experiments and at the LHC
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Back-up slides

Back-up slides
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Back-up slides: Boltzmann equations

H(mX )

x

dYX

dx
= −4s〈σXX→Liψi

v〉[Y 2
X − (Y

eq
X

)2] − 2sε
ξ Y∆Li

Yγ
〈σXX→Liψi

v〉(Yeq
X

)2

−Br
2
X 〈ΓS 〉Y

eq
S

 YX

Y
eq
X

2

+ BrX 〈ΓS 〉
(
YS − BrL Y

eq
S

)
− ε

ξ Y∆Li

2Yγ
BrXBrL〈ΓS 〉Y

eq
S

;

H(mX )

x

dYS

dx
= −〈ΓS 〉YS + 〈ΓS 〉Y

eq
S

BrL + BrX

 YX

Y
eq
X

2 ;

H(mX )

x η

dY∆Li

dx
=

ε

2
BrL〈ΓS 〉

YS + Y
eq
S

1 − 2BrL − BrX

1 +
Y 2
X

(Y
eq
X

)2

 + 2s ε〈σXX↔Liψi
v〉
[
Y 2
X − (Y

eq
X

)2
]

−
ξ Y∆Li

Yγ

s 〈σXX↔Liψi
v〉(Yeq

X
)2 + 2s[〈σ

Liψi↔L
†
i
ψ
†
i

v〉 + 〈σ(i 6=j)

Liψi↔L
†
j
ψ
†
j

v〉]Yeq
L

Y
eq
ψ


−

2ξ Y∆Li

Yγ
s 〈σ

Liψj↔L
†
j
ψ
†
i

v〉Yeq
L

Y
eq
ψ

−
ξ Y∆Li

Yγ

s 〈σ
Xψi↔XL

†
i

v〉YX Y
eq
ψ

+ 2s 〈σ
ψiψi↔L

†
i
L
†
i

v〉(Yeq
ψ

)2 + 2s 〈σ(i 6=j)

ψiψj↔L
†
i
L
†
j

v〉(Yeq
ψ

)2



+
ε2 ξ Y∆Li

4Yγ
Br

2
L〈ΓS 〉Y

eq
S
.
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Back-up slides: chemical potential relations

1 The ψ mass: µψ = −µψ̄.

2 The SU(2) sphalerons: 3µQ + µL = 0.

3 The up quark Yukawa: µQ + µH − µu = 0.

4 The down quark Yukawa: µQ − µH − µd = 0.

5 The lepton Yukawa: µL − µH − µE = 0.

6 The ψ Yukawa: µψ − µH + µχ = 0.

7 Hypercharge conservation:
µQ + 2µu − µd − µL − µE + (µψ − µψ̄)× (neqψ /n

eq
γ ) + 2µH/3 = 0.

8 Conservation of generalized B + ψ − L− χ symmetry:
2µQ + µu + µd − 2µL − µE − µχ + 2(µψ − µψ̄)× (neqψ /n

eq
γ ) = 0.
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Back-up slides: chemical potential solutions

µQ = −1

3
µL,

µu =
5− 19r

21 + 84r
µL,

µd = −19 + 37r

21 + 84r
µL,

µE =
3 + 25r

7 + 28r
µL,

µH =
4 + 3r

7 + 28r
µL,

µχ = − 79− 9r

21 + 84r
µL

µψ =
13

3 + 12r
µL,
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Variations: new annihilation channels

What happens if we move beyond the minimal model?

May generically expect additional annihilation channels

Z ′

X

X†

L†

L

DM relic density constraints mean that lepton violating coupling is smaller ⇒
less washout

If σann → ασann, then Y∆L → Y∆L/α

Does smaller yL compensate for smaller Y∆L?

Yes, if mψ � mX
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Variations: new annihilation channels

mS = 5 TeV

α = 1

0.2 0.3 0.4 0.5 0.6 0.7
0.0

0.2

0.4

0.6

0.8

1.0

mX�mS

m
Ψ

�
m

S

α = 10

0.2 0.3 0.4 0.5 0.6 0.7
0.0

0.2

0.4

0.6

0.8

1.0

mX�mS

m
Ψ

�
m

S

More parameter space open at low mX , mψ

More restricted at high mX , mψ
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